Nomic Embed: Training a Reproducible Long Context Text Embedder
Date : 2024-02-02
Abstract
This technical report describes the training of nomic-embed-text-v1, the first fully reproducible, open-source, open-weights, open-data, 8192 context length English text embedding model that outperforms both OpenAI Ada-002 and OpenAI text-embedding-3-small on short and long-context tasks. We release the training code and model weights under an Apache 2 license. In contrast with other open-source models, we release a training data loader with 235 million curated text pairs that allows for the full replication of nomic-embed-text-v1.
Also read Nomic's blog post.
Research paper below links to GitHub repo
Recently on :
Artificial Intelligence
Information Processing | Computing
Research
PITTI - 2024-09-19
A bubble in AI?
Bubble or true technological revolution? While the path forward isn't without obstacles, the value being created by AI extends ...
PITTI - 2024-09-08
Artificial Intelligence : what everyone can agree on
Artificial Intelligence is a divisive subject that sparks numerous debates about both its potential and its limitations. Howeve...
WEB - 2024-03-04
Nvidia bans using translation layers for CUDA software | Tom's Hardware
Tom's Hardware - Nvidia has banned running CUDA-based software on other hardware platforms using translation layers in its lice...
WEB - 2024-02-21
Retell AI : conversational speech engine
Retell tackle the challenge of real time conversations with voice AI.
WEB - 2024-02-21
Groq Inference Tokenomics: Speed, But At What Cost? | Semianalysis
Semianalysis - Groq, an AI hardware startup, has been making waves with their impressive demos showcasing Mistral Mixtral 8x7b ...