DreaMoving: A Human Video Generation Frameworkbased on Diffusion Models
Date : 2023-12-08
Abstract
In this paper, we (Mengyang Feng, Jinlin Liu, Kai Yu, Yuan Yao, Zheng Hui, Xiefan Guo, Xianhui Lin, Haolan Xue, Chen Shi, Xiaowen Li, Aojie Li, Xiaoyang Kang, Biwen Lei, Miaomiao Cui, Peiran Ren and Xuansong Xie) present DreaMoving, a diffusion-based controllable video generation framework to produce high-quality customized human videos. Specifically, given target identity and posture sequences, DreaMoving can generate a video of the target identity dancing anywhere driven by the posture sequences. To this end, we propose a Video ControlNet for motion-controlling and a Content Guider for identity preserving. The proposed model is easy to use and can be adapted to most stylized diffusion models to generate diverse results.
Project page below links to research paper and GitHub repo
Recently on :
Artificial Intelligence
Research
Information Processing | Computing
WEB - 2024-12-30
Fine-tune ModernBERT for text classification using synthetic data
David Berenstein explains how to finetune a ModernBERT model for text classification on a synthetic dataset generated from argi...
WEB - 2024-12-25
Fine-tune classifier with ModernBERT in 2025
In this blog post Philipp Schmid explains how to fine-tune ModernBERT, a refreshed version of BERT models, with 8192 token cont...
WEB - 2024-12-18
MordernBERT, finally a replacement for BERT
6 years after the release of BERT, answer.ai introduce ModernBERT, bringing modern model optimizations to encoder-only models a...
PITTI - 2024-09-19
A bubble in AI?
Bubble or true technological revolution? While the path forward isn't without obstacles, the value being created by AI extends ...
PITTI - 2024-09-08
Artificial Intelligence : what everyone can agree on
Artificial Intelligence is a divisive subject that sparks numerous debates about both its potential and its limitations. Howeve...