
Bridging the data gap between children and large language models
Date : 2023-08-31
Abstract
Large language models (LLMs) show intriguing emergent behaviors, yet they receive around four or five orders of magnitude more language data than human children. What accounts for this vast difference in sample efficiency? Candidate explanations include children’s pre-existing conceptual knowledge, their use of multimodal grounding, and the interactive, social nature of their input.
Research paper available below
Recently on :
Artificial Intelligence
Information Processing | Computing
WEB - 2025-11-13
Measuring political bias in Claude
Anthropic gives insights into their evaluation methods to measure political bias in models.
WEB - 2025-10-09
Defining and evaluating political bias in LLMs
OpenAI created a political bias evaluation that mirrors real-world usage to stress-test their models’ ability to remain objecti...
WEB - 2025-07-23
Preventing Woke AI In Federal Government
Citing concerns that ideological agendas like Diversity, Equity, and Inclusion (DEI) are compromising accuracy, this executive ...
WEB - 2025-07-10
America’s AI Action Plan
To win the global race for technological dominance, the US outlined a bold national strategy for unleashing innovation, buildin...
WEB - 2024-12-30
Fine-tune ModernBERT for text classification using synthetic data
David Berenstein explains how to finetune a ModernBERT model for text classification on a synthetic dataset generated from argi...